• My research evolves around combinatorial objects, algebraic structures on them and their interaction with representation theory and geometry. More specifically matroids, polytopes, Ehrhart theory, (quasi)symmetric functions, Hopf algebras, are usually the kind of objects showing up in my research.


You can check them in my Google Scholar site or in arxiv


In preparation

  • A quantum MN rule for the cohomology of the flag variety (with N. Bergeron, L. Colmenarejo, F. Saliola, F. Sottile).

  • Ehrhart theory of lattice path matroids (with K. Knauer, J. Valencia)

  • Shellability of flags of positroids. (with A. Dochtermann, Y. Li, K. Knauer)



  • Luis Calderón. En desarrollo.

  • Jerónimo Valencia. Thesis: Teoría de Ehrhart y caminos reticulares. (Noviembre 2021)

  • Santiago Estupiñan. Thesis: Permutahedra and power-sum symmetric functions (March 2021)

  • Jonathan Niño (codirected w Mauricio Velasco). Thesis: Calculation of invariant rings under the action of finite groups. (May 2019)

  • Daniel Tamayo. Thesis: Combinatorics of quotients of positroids. (May 2019)


  • Mariana Ramirez. En progreso.

  • Tomás Bermudez (codirected w Dave Karpuk). Thesis: Subspace packing in grassmannian space. (2020)

  • Felipe Rueda. Thesis: Polinomios de Tutte y Schur positividad. (2019)

  • Jerónimo Valencia. Thesis: Cocientes de matroides, antípodas y f-vectores. (2019)

  • Carlos Sánchez. Thesis: Volúmenes de politopos de flujo de subgrafos caracol. (2019)

  • Santiago Estupiñan. Thesis: Problemas de visibilidad en N^n. (2018).

  • Eliana Tolosa (2018-I UN). Thesis: Grupo de caracteres de un álgebra de Hopf de matroides.

  • Julian Pulido (2017-II UN). Thesis: Politopos Unipotentes.